skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Snowden, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A cubic space is a vector space equipped with a symmetric trilinear form. Using categorical Fraïssé theory, we show that there is a universal ultrahomogeneous cubic space V of countable infinite dimension, which is unique up to isomorphism. The automorphism group G of V is quite large and, in some respects, similar to the infinite orthogonal group. We show that G is a linear-oligomorphic group (a class of groups we introduce), and we determine the algebraic representation theory of G. We also establish some model-theoretic results about V: it is ω-categorical (in a modified sense), and has quantifier elimination (for vectors). Our results are not specific to cubic spaces, and hold for a very general class of tensor spaces; we view these spaces as linear analogs of the relational structures studied in model theory. 
    more » « less